The land-cover cascade: relationships coupling land and water.
نویسندگان
چکیده
We introduce the land-cover cascade (LCC) as a conceptual framework to quantify the transfer of land-cover-disturbance effects to stream biota. We hypothesize that disturbance is propagated through multivariate systems through key variables that transform a disturbance and pass a reorganized disturbance effect to the next hierarchical level where the process repeats until ultimately affecting biota. We measured 31 hydrologic, geomorphic, erosional, and substrate variables and 26 biotic responses that have been associated with land-use disturbance in third- and fourth-order streams in the Blue Ridge physiographic province in western North Carolina (USA). Regression analyses reduced this set of variables to include only those that responded to land cover and/or affected biota. From this reduced variable set, hypotheses were generated that predicted the disturbance pathways affecting each biotic response following the land-cover-cascade design. Cascade pathways began with land cover and ended with biotic responses, passing through at least one intermediate ecosystem abiotic component. Cascade models were tested for predictive ability and goodness-of-fit using path analysis. Biota were influenced by near-stream urban, agricultural, and forest land cover as propagated by hydrologic (e.g., discharge), geomorphic (e.g., stream bank height), erosional (e.g., suspended sediments), and depositional streambed (e.g., substrate size) features occurring along LCC pathways, reflecting abiotic mechanisms mediating land-cover disturbance. Our results suggest that communities are influenced by land-cover change indirectly through a hierarchy of associated abiotic components that propagate disturbance to biota. More generally, the land-cover cascade concept and experimental framework demonstrate an organized approach to the generic study of cascades and the complex relationships between landscapes and streams.
منابع مشابه
Land use impacts on surface water quality by statistical approaches
Surface waters are the most important economic resource for humans which provide water for agricultural, industrial and anthropogenic activities. Surface water quality plays vital role in protecting aquatic ecosystems. Unplanned urbanization, intense agricultural activities and deforestation are positively associated with carbon, nitrogen and phosphorous related water quality parameters. Multip...
متن کاملAnnual Water Yield Estimation for Different Land Uses by GIS-Based InVEST Model (Case Study: Mish-khas Catchment, Ilam Province, Iran)
Fresh water supply and its security encounter a high level of fluctuating variability under global climate changes. To address these concerns in catchment water management, a good understanding of land use/cover impacts on the hydrological cycle affecting water supply is crucial. The objective of this study is to define a model to investigate the impact of existing land use/cover on water yield...
متن کاملThe effect of Urban Development on Watershed Hydrological Properties (case study: Tajrish Watershed)
The effect of Urban Development on Watershed Hydrological Properties (case study: Tajrish Watershed) Throughout the human history, societies and rivers have been closely linked, so that the human civilization began from the riverside (Stevaux et al. 2009 (. The quantitative and qualitative characteristic of river is vulnerable to land-use changes (Kang et al. 2010). Natural and urban watershed...
متن کاملRelationships Between land Use and Arbuscular Mycorrhizal (AM) Spore Abundance in Calcareous Soils
This study was conducted to determine soil properties that correlate with the arbuscular mycorrhizal fungal (AMF) spore numbers in semiarid calcareous soils of Hamadan province in northwestern of Iran. Soil samples from six sites managed differently were collected from a 0 to 30 cm depth. The results showed that land use and management systems had a significant effect on AMF spore number in soi...
متن کاملHydrologic responses of watershed assessment to land cover and climate change using soil and water assessment tool model
Predicting the impact of land cover and climate change on hydrologic responses using modeling tools are essential in understanding the movement and pattern of hydrologic processes within the watershed. The paper provided potential implications of land conversions and climate change scenarios on the hydrologic processes of Muleta watershed using soil and water assessment tool model. Model inputs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology
دوره 88 1 شماره
صفحات -
تاریخ انتشار 2007